Information injection-pump assembly
BOSCH
9 400 611 422
9400611422
ZEXEL
101405-3170
1014053170
KOMATSU
3863897
3863897

Rating:
Service parts 101405-3170 INJECTION-PUMP ASSEMBLY:
1.
_
5.
AUTOM. ADVANCE MECHANIS
6.
COUPLING PLATE
7.
COUPLING PLATE
8.
_
9.
_
10.
NOZZLE AND HOLDER ASSY
11.
Nozzle and Holder
12.
Open Pre:MPa(Kqf/cm2)
21.6{220}
13.
NOZZLE-HOLDER
14.
NOZZLE
15.
NOZZLE SET
Cross reference number
BOSCH
9 400 611 422
9400611422
ZEXEL
101405-3170
1014053170
KOMATSU
3863897
3863897
Zexel num
Bosch num
Firm num
Name
101405-3170
9 400 611 422
3863897 KOMATSU
INJECTION-PUMP ASSEMBLY
S4D102E K
S4D102E K
101405-3170
9 400 611 422
6732711390 KOMATSU
INJECTION-PUMP ASSEMBLY
S4D102E K
S4D102E K
Calibration Data:
Adjustment conditions
Test oil
1404 Test oil ISO4113 or {SAEJ967d}
1404 Test oil ISO4113 or {SAEJ967d}
Test oil temperature
degC
40
40
45
Nozzle and nozzle holder
105780-8140
Bosch type code
EF8511/9A
Nozzle
105780-0000
Bosch type code
DN12SD12T
Nozzle holder
105780-2080
Bosch type code
EF8511/9
Opening pressure
MPa
17.2
Opening pressure
kgf/cm2
175
Injection pipe
Outer diameter - inner diameter - length (mm) mm 6-2-600
Outer diameter - inner diameter - length (mm) mm 6-2-600
Overflow valve
131424-3420
Overflow valve opening pressure
kPa
255
221
289
Overflow valve opening pressure
kgf/cm2
2.6
2.25
2.95
Tester oil delivery pressure
kPa
157
157
157
Tester oil delivery pressure
kgf/cm2
1.6
1.6
1.6
Direction of rotation (viewed from drive side)
Right R
Right R
Injection timing adjustment
Direction of rotation (viewed from drive side)
Right R
Right R
Injection order
1-3-4-2
Pre-stroke
mm
2.5
2.45
2.55
Beginning of injection position
Drive side NO.1
Drive side NO.1
Difference between angles 1
Cal 1-3 deg. 90 89.5 90.5
Cal 1-3 deg. 90 89.5 90.5
Difference between angles 2
Cal 1-4 deg. 180 179.5 180.5
Cal 1-4 deg. 180 179.5 180.5
Difference between angles 3
Cyl.1-2 deg. 270 269.5 270.5
Cyl.1-2 deg. 270 269.5 270.5
Injection quantity adjustment
Adjusting point
A
Rack position
11.5
Pump speed
r/min
1200
1200
1200
Average injection quantity
mm3/st.
91.5
90.5
92.5
Max. variation between cylinders
%
0
-2.5
2.5
Basic
*
Fixing the lever
*
Boost pressure
kPa
44
44
Boost pressure
mmHg
330
330
Hydraulic cylinder ON
*
Injection quantity adjustment_02
Adjusting point
C
Rack position
8.6+-0.5
Pump speed
r/min
410
410
410
Average injection quantity
mm3/st.
8
7
9
Max. variation between cylinders
%
0
-15
15
Fixing the rack
*
Boost pressure
kPa
0
0
0
Boost pressure
mmHg
0
0
0
Hydraulic cylinder ON
*
Injection quantity adjustment_03
Adjusting point
D
Rack position
-
Pump speed
r/min
100
100
100
Average injection quantity
mm3/st.
65
65
75
Fixing the lever
*
Boost pressure
kPa
0
0
0
Boost pressure
mmHg
0
0
0
Hydraulic cylinder OFF
*
Rack limit
*
Boost compensator adjustment
Pump speed
r/min
800
800
800
Rack position
R1-0.65
Boost pressure
kPa
20
18.7
21.3
Boost pressure
mmHg
150
140
160
Boost compensator adjustment_02
Pump speed
r/min
800
800
800
Rack position
R1(11.5)
Boost pressure
kPa
30.7
24
37.4
Boost pressure
mmHg
230
180
280
Test data Ex:
Governor adjustment

N:Pump speed
R:Rack position (mm)
(1)Target notch: K
(2)Tolerance for racks not indicated: +-0.05mm.
(3)The torque control spring does not operate.
(4)Adjust the secondary timing before adjusting the governor.
(5)RACK LIMIT (When hydraulic cylinder is OFF)
(6)When hydraulic cylinder ON: P1
(7)Boost compensator stroke: BCL
----------
K=10 P1=((392)kPa,(4)kgf/cm2) BCL=0.65+-0.1mm
----------
----------
K=10 P1=((392)kPa,(4)kgf/cm2) BCL=0.65+-0.1mm
----------
Speed control lever angle

F:Full speed
I:Idle
(1)Stopper bolt setting
----------
----------
a=14deg+-5deg b=27deg+-5deg
----------
----------
a=14deg+-5deg b=27deg+-5deg
Stop lever angle

N:Pump normal
S:Stop the pump.
(1)No return spring
----------
----------
a=0deg+-5deg b=53deg+-5deg
----------
----------
a=0deg+-5deg b=53deg+-5deg
Timing setting

(1)Pump vertical direction
(2)Key groove position at No. 1 cylinder's beginning of injection position (at BTDC: aa).
(3)Position of the key groove of the No. 1 cylinder at B.T.D.C. bb (fix the governor flyweight at this position for delivery).
(4)B.T.D.C.: aa
(5)At second timing adjustment, set the camshaft at the * position and tighten the flyweight locknut.
(6)Align the flyweight's timing gear position with the lockpin groove and then fully tighten the flyweight to the camshaft.
(7)Remove the lock pin and adjust the governor. Reinstall the lock pin to fix the flyweight for delivery.
----------
aa=14.5deg bb=0deg
----------
a=54deg54min+-3deg b=7deg15min+-30min
----------
aa=14.5deg bb=0deg
----------
a=54deg54min+-3deg b=7deg15min+-30min
Information:
Replace:
Thrust, Main and Rod Bearings, Valve Rotators, Thermostat and Throttle Position SensorIn most probability, these components will not last until the second overhaul. Therefore, Caterpillar recommends the installation of these components new at each overhaul period.Inspect:
Crankshaft, Camshaft, Camshaft Followers, Vibration Damper, Spacer Block, Oil Pump and Fuel Transfer PumpThe ideal time for inspecting your crankshaft, camshaft and vibration damper is while the engine is disassembled for overhaul. Inspect each component for potential damage as follows:Crankshaft - Inspect for bend, journal damage and bearing material seized to the journal. At the same time, check the taper and profile of the crankshaft journals by interpreting your main and rod bearing wear patterns. In case of an out-of-frame overhaul, use the magnetic particle inspection process to check the crankshaft for cracks.* Camshaft - Inspect the camshaft for journal damage. In case of an out-of-frame overhaul, use the magnetic particle inspection process to check the camshaft for cracks.* Camshaft Followers - For out-of-frame overhaul, inspect the cam bearing for fatigue and wear.* Vibration Damper - Inspect the damper for rubber deterioration and movement of the outer ring relative to the inner hub.* Spacer Block - Inspect the spacer block for excessive wear or warping. For additional information regarding these components, contact your local Caterpillar dealer for assistance.Test:
Electronic Unit Injectors For additional information regarding this component, contact your local Caterpillar dealer for assistance.Clean/Test:
Oil Cooler Core and Aftercooler CoreCaterpillar recommends that the oil cooler core and the air-to-air aftercooler core be cleaned and pressure tested at each overhaul. For additional specifications and/or pressure test information, contact your local Caterpillar dealer.Cleaning Procedure for Air-to-Air Aftercooler
Caterpillar recommends that the air-to-air aftercooler core be removed, cleaned, and tested at overhaul time, if a turbocharger failure has occurred, or if at any time the turbocharger develops an oil leak.To clean the air-to-air aftercooler system:1. Remove the air-to-air aftercooler core. Turn the core upside down to remove debris from the inlet tank.
Do not use caustic cleaners to clean the air-to-air aftercooler core. Caustic cleaners will attack the internal metals of the core and cause leakage.
2. Back flush internally with a solvent to loosen foreign substances and to remove oil.Caterpillar recommends the use of Caterpillar Hydrosolv 4165 or Hydrosolv 100 Liquid Cleaners. For more information see "General Instructions and Application Guide" Form LEHQ6101 or contact your Caterpillar dealer.3. Shake the core vigorously to eliminate any trapped debris.4. Wash the core with hot, soapy water. Rinse thoroughly with clean water.
The maximum air pressure must not be above 30 psi (205 kPa) for cleaning purposes.
5. Dry the core with compressed air. Blow air in reverse direction of normal flow. Use all necessary safety equipment while using compressed air.6. Inspect the system to ensure cleanliness and install the air-to-air aftercooler core.Caterpillar Recommendation
The "repair before failure" concept makes sense. It saves money, lowers operating costs and minimizes downtime.As previously illustrated, it is not cheaper to operate the truck until an engine component fails, since failing components may increase fuel costs and upon failure, could
Thrust, Main and Rod Bearings, Valve Rotators, Thermostat and Throttle Position SensorIn most probability, these components will not last until the second overhaul. Therefore, Caterpillar recommends the installation of these components new at each overhaul period.Inspect:
Crankshaft, Camshaft, Camshaft Followers, Vibration Damper, Spacer Block, Oil Pump and Fuel Transfer PumpThe ideal time for inspecting your crankshaft, camshaft and vibration damper is while the engine is disassembled for overhaul. Inspect each component for potential damage as follows:Crankshaft - Inspect for bend, journal damage and bearing material seized to the journal. At the same time, check the taper and profile of the crankshaft journals by interpreting your main and rod bearing wear patterns. In case of an out-of-frame overhaul, use the magnetic particle inspection process to check the crankshaft for cracks.* Camshaft - Inspect the camshaft for journal damage. In case of an out-of-frame overhaul, use the magnetic particle inspection process to check the camshaft for cracks.* Camshaft Followers - For out-of-frame overhaul, inspect the cam bearing for fatigue and wear.* Vibration Damper - Inspect the damper for rubber deterioration and movement of the outer ring relative to the inner hub.* Spacer Block - Inspect the spacer block for excessive wear or warping. For additional information regarding these components, contact your local Caterpillar dealer for assistance.Test:
Electronic Unit Injectors For additional information regarding this component, contact your local Caterpillar dealer for assistance.Clean/Test:
Oil Cooler Core and Aftercooler CoreCaterpillar recommends that the oil cooler core and the air-to-air aftercooler core be cleaned and pressure tested at each overhaul. For additional specifications and/or pressure test information, contact your local Caterpillar dealer.Cleaning Procedure for Air-to-Air Aftercooler
Caterpillar recommends that the air-to-air aftercooler core be removed, cleaned, and tested at overhaul time, if a turbocharger failure has occurred, or if at any time the turbocharger develops an oil leak.To clean the air-to-air aftercooler system:1. Remove the air-to-air aftercooler core. Turn the core upside down to remove debris from the inlet tank.
Do not use caustic cleaners to clean the air-to-air aftercooler core. Caustic cleaners will attack the internal metals of the core and cause leakage.
2. Back flush internally with a solvent to loosen foreign substances and to remove oil.Caterpillar recommends the use of Caterpillar Hydrosolv 4165 or Hydrosolv 100 Liquid Cleaners. For more information see "General Instructions and Application Guide" Form LEHQ6101 or contact your Caterpillar dealer.3. Shake the core vigorously to eliminate any trapped debris.4. Wash the core with hot, soapy water. Rinse thoroughly with clean water.
The maximum air pressure must not be above 30 psi (205 kPa) for cleaning purposes.
5. Dry the core with compressed air. Blow air in reverse direction of normal flow. Use all necessary safety equipment while using compressed air.6. Inspect the system to ensure cleanliness and install the air-to-air aftercooler core.Caterpillar Recommendation
The "repair before failure" concept makes sense. It saves money, lowers operating costs and minimizes downtime.As previously illustrated, it is not cheaper to operate the truck until an engine component fails, since failing components may increase fuel costs and upon failure, could
Have questions with 101405-3170?
Group cross 101405-3170 ZEXEL
Komatsu
Komatsu
101405-3170
9 400 611 422
3863897
INJECTION-PUMP ASSEMBLY
S4D102E
S4D102E
101405-3170
9 400 611 422
6732711390
INJECTION-PUMP ASSEMBLY
S4D102E
S4D102E