Information injection-pump assembly
ZEXEL
101603-9190
1016039190

Rating:
Service parts 101603-9190 INJECTION-PUMP ASSEMBLY:
1.
_
7.
COUPLING PLATE
8.
_
9.
_
11.
Nozzle and Holder
12.
Open Pre:MPa(Kqf/cm2)
21.6(220)
15.
NOZZLE SET
Cross reference number
ZEXEL
101603-9190
1016039190
Zexel num
Bosch num
Firm num
Name
101603-9190
DPICO
INJECTION-PUMP ASSEMBLY
KH * Q
KH * Q
Calibration Data:
Adjustment conditions
Test oil
1404 Test oil ISO4113 or {SAEJ967d}
1404 Test oil ISO4113 or {SAEJ967d}
Test oil temperature
degC
40
40
45
Nozzle and nozzle holder
105780-8140
Bosch type code
EF8511/9A
Nozzle
105780-0000
Bosch type code
DN12SD12T
Nozzle holder
105780-2080
Bosch type code
EF8511/9
Opening pressure
MPa
17.2
Opening pressure
kgf/cm2
175
Injection pipe
Outer diameter - inner diameter - length (mm) mm 6-2-600
Outer diameter - inner diameter - length (mm) mm 6-2-600
Overflow valve
134424-0920
Overflow valve opening pressure
kPa
162
147
177
Overflow valve opening pressure
kgf/cm2
1.65
1.5
1.8
Tester oil delivery pressure
kPa
157
157
157
Tester oil delivery pressure
kgf/cm2
1.6
1.6
1.6
Direction of rotation (viewed from drive side)
Right R
Right R
Injection timing adjustment
Direction of rotation (viewed from drive side)
Right R
Right R
Injection order
1-4-2-6-
3-5
Pre-stroke
mm
3.1
3.07
3.13
Beginning of injection position
Drive side NO.1
Drive side NO.1
Difference between angles 1
Cal 1-4 deg. 60 59.75 60.25
Cal 1-4 deg. 60 59.75 60.25
Difference between angles 2
Cyl.1-2 deg. 120 119.75 120.25
Cyl.1-2 deg. 120 119.75 120.25
Difference between angles 3
Cal 1-6 deg. 180 179.75 180.25
Cal 1-6 deg. 180 179.75 180.25
Difference between angles 4
Cal 1-3 deg. 240 239.75 240.25
Cal 1-3 deg. 240 239.75 240.25
Difference between angles 5
Cal 1-5 deg. 300 299.75 300.25
Cal 1-5 deg. 300 299.75 300.25
Injection quantity adjustment
Adjusting point
A
Rack position
6.5
Pump speed
r/min
900
900
900
Average injection quantity
mm3/st.
58.5
57.5
59.5
Max. variation between cylinders
%
0
-3.5
3.5
Basic
*
Fixing the lever
*
Injection quantity adjustment_02
Adjusting point
B
Rack position
5+-0.5
Pump speed
r/min
375
375
375
Average injection quantity
mm3/st.
8
7
9
Max. variation between cylinders
%
0
-10
10
Fixing the rack
*
Remarks
Adjust only variation between cylinders; adjust governor according to governor specifications.
Adjust only variation between cylinders; adjust governor according to governor specifications.
Injection quantity adjustment_03
Adjusting point
C
Rack position
13.7+-0.
5
Pump speed
r/min
100
100
100
Average injection quantity
mm3/st.
125
125
135
Fixing the lever
*
Rack limit
*
Injection quantity adjustment_04
Adjusting point
E
Rack position
6.8
Pump speed
r/min
600
600
600
Average injection quantity
mm3/st.
51
49
53
Fixing the lever
*
Timer adjustment
Pump speed
r/min
1250
Advance angle
deg.
0.5
Timer adjustment_02
Pump speed
r/min
1300
Advance angle
deg.
1.5
1
2
Timer adjustment_03
Pump speed
r/min
1430
Advance angle
deg.
4.5
4.2
4.8
Remarks
Finish
Finish
Test data Ex:
Governor adjustment

N:Pump speed
R:Rack position (mm)
(1)Lever ratio: RT
(2)Target shim dimension: TH
(3)RACK LIMIT
(4)Damper spring setting: DL
----------
RT=0.8 TH=1.5mm DL=6-0.2mm
----------
----------
RT=0.8 TH=1.5mm DL=6-0.2mm
----------
Speed control lever angle

F:Full speed
----------
----------
a=21deg+-5deg
----------
----------
a=21deg+-5deg
0000000901

F:Full load
I:Idle
(1)Use the hole at R = aa
(2)Stopper bolt setting
----------
aa=65mm
----------
a=23deg+-3deg b=2deg+-5deg
----------
aa=65mm
----------
a=23deg+-3deg b=2deg+-5deg
Stop lever angle

N:Pump normal
S:Stop the pump.
(1)Rack position = aa or less
----------
aa=2.5mm
----------
a=35deg+-5deg b=50deg+-5deg
----------
aa=2.5mm
----------
a=35deg+-5deg b=50deg+-5deg
Timing setting

(1)Pump vertical direction
(2)Coupling's key groove position at No 1 cylinder's beginning of injection
(3)-
(4)-
----------
----------
a=(60deg)
----------
----------
a=(60deg)
Information:
(Diagnosis With Chassis Dynamometer)
1. Preparation of vehicle for fuel consumption test (consult dynamometer manufacturer's operating instructions for specific details on correct operation). Always perform the Primary Engine Test procedure before vehicle is installed on chassis dynamometer.a. Place vehicle on the chassis dynamometer. Tie the vehicle in a way that will not add any load to the drive wheels. Do not pull wheels down into dynamometer drive rolls.Check the radiator coolant level, crankcase oil level, tire pressure, tire condition, remove rocks from the tire tread and connect exhaust system.
Recapped tires should be run on a chassis dynamometer only at the customer's own risk.
b. The maximum acceptable fuel rate must be calculated for the customer's engine by use of the formula that follows: Find the rated brake specific fuel consumption (lb-bhp/hr) from the Fuel Setting And Related Information Fiche and add 0.25 mm (.010 in) manufacturing tolerance. Multiply this value by the advertised engine horsepower (plus 3% manufactures tolerance) and divide by the density of the fuel (lbs/gal).c. Calculate the allowable limitt that the customer can expect from his engine and present these figures to him. Caterpillar engines are rated with the conditions that follow: Barometric pressure = 747 mm (29.4 in) of mercuryInlet air temperature = 29°C (85°F) at air cleaner inletFuel gravity = API gravity of 35 at 16°C (60°F)Measure and record these variables.2. Operate vehicle at 60% of rated speed with moderate load until oil and coolant temperatures reach their normal range for operation.
If there is a heavy vibration, drive shaft whip, tire bounce, etc., do not continue with dynamometer test until cause of the problem is corrected. Engines that have had new internal parts installed should be operated on a run-in schedule before operation at full load.
Put transmission in direct gear and the differential in the highest speed ratio. Operate vehicle at maximum engine speed and increase chassis dynamometer load until a speed of 50 rpm less than rated speed is reached (continuity light should be on). Maintain this speed for one minute and record the engine speed, wheel horsepower and fuel rate.3. If the fuel rate and the wheel horsepower are both acceptable, then the engine is not the cause of the complaint, or the complaint is not valid. Refer to section Problem With Vehicle Or Vehicle Operation.4. If the wheel horsepower is low, regardless of how the fuel rate measures, refer to the Low Power Troubleshooting Chart. The low power problem must be corrected first.5. If the fuel rate and wheel horsepower are both too high, check the set point (balance point) of the engine (speed at which the load stop pin just touches the torque spring or stop bar). At this point the continuity light should flicker (go off and on dimly).If the set point (balance point) is high, the high idle will have to be decreased to lower the set point (balance point) to the correct rpm (point at which the continuity light just comes on). If the set point (balance
1. Preparation of vehicle for fuel consumption test (consult dynamometer manufacturer's operating instructions for specific details on correct operation). Always perform the Primary Engine Test procedure before vehicle is installed on chassis dynamometer.a. Place vehicle on the chassis dynamometer. Tie the vehicle in a way that will not add any load to the drive wheels. Do not pull wheels down into dynamometer drive rolls.Check the radiator coolant level, crankcase oil level, tire pressure, tire condition, remove rocks from the tire tread and connect exhaust system.
Recapped tires should be run on a chassis dynamometer only at the customer's own risk.
b. The maximum acceptable fuel rate must be calculated for the customer's engine by use of the formula that follows: Find the rated brake specific fuel consumption (lb-bhp/hr) from the Fuel Setting And Related Information Fiche and add 0.25 mm (.010 in) manufacturing tolerance. Multiply this value by the advertised engine horsepower (plus 3% manufactures tolerance) and divide by the density of the fuel (lbs/gal).c. Calculate the allowable limitt that the customer can expect from his engine and present these figures to him. Caterpillar engines are rated with the conditions that follow: Barometric pressure = 747 mm (29.4 in) of mercuryInlet air temperature = 29°C (85°F) at air cleaner inletFuel gravity = API gravity of 35 at 16°C (60°F)Measure and record these variables.2. Operate vehicle at 60% of rated speed with moderate load until oil and coolant temperatures reach their normal range for operation.
If there is a heavy vibration, drive shaft whip, tire bounce, etc., do not continue with dynamometer test until cause of the problem is corrected. Engines that have had new internal parts installed should be operated on a run-in schedule before operation at full load.
Put transmission in direct gear and the differential in the highest speed ratio. Operate vehicle at maximum engine speed and increase chassis dynamometer load until a speed of 50 rpm less than rated speed is reached (continuity light should be on). Maintain this speed for one minute and record the engine speed, wheel horsepower and fuel rate.3. If the fuel rate and the wheel horsepower are both acceptable, then the engine is not the cause of the complaint, or the complaint is not valid. Refer to section Problem With Vehicle Or Vehicle Operation.4. If the wheel horsepower is low, regardless of how the fuel rate measures, refer to the Low Power Troubleshooting Chart. The low power problem must be corrected first.5. If the fuel rate and wheel horsepower are both too high, check the set point (balance point) of the engine (speed at which the load stop pin just touches the torque spring or stop bar). At this point the continuity light should flicker (go off and on dimly).If the set point (balance point) is high, the high idle will have to be decreased to lower the set point (balance point) to the correct rpm (point at which the continuity light just comes on). If the set point (balance
Have questions with 101603-9190?
Group cross 101603-9190 ZEXEL
Dpico
Nissan-Diesel
Yanmar
Nissan-Diesel
Dpico
Hyundai
Dpico
101603-9190
INJECTION-PUMP ASSEMBLY
KH
KH