101601-3160 ZEXEL INJECTION-PUMP ASSEMBLY Calibration Data 1016013160 6138711280


 

Information injection-pump assembly

ZEXEL 101601-3160 1016013160
KOMATSU 6138711280 6138711280
101601-3160 INJECTION-PUMP ASSEMBLY
Rating:
66
Buy INJECTION-PUMP ASSEMBLY 101601-3160 zexel genuine, new aftermarket engine parts with delivery

Cross reference number

ZEXEL 101601-3160 1016013160
KOMATSU 6138711280 6138711280


Zexel num
Bosch num
Firm num
Name
101601-3160 
 
6138711280  KOMATSU
INJECTION-PUMP ASSEMBLY
SA6D110 * K

Calibration Data:

Adjustment conditions
Test oil
1404 Test oil
  ISO4113 or {SAEJ967d}
Test oil temperature degC   40 40 45
Nozzle and nozzle holder   105780-8140
Bosch type code   EF8511/9A
Nozzle   105780-0000
Bosch type code   DN12SD12T
Nozzle holder   105780-2080
Bosch type code   EF8511/9
Opening pressure MPa   17.2
Opening pressure kgf/cm2   175
Injection pipe
Outer diameter - inner diameter - length (mm)
mm   6-2-600
Tester oil delivery pressure kPa   157 157 157
Tester oil delivery pressure kgf/cm2   1.6 1.6 1.6
Direction of rotation (viewed from drive side)
Right
  R
Injection timing adjustment
Direction of rotation (viewed from drive side)
Right
  R
Injection order   1-5-3-6- 2-4
Pre-stroke mm   4 3.95 4.05
Beginning of injection position
Drive side
  NO.1
Difference between angles 1
Cal 1-5
deg.   60 59.5 60.5
Difference between angles 2
Cal 1-3
deg.   120 119.5 120.5
Difference between angles 3
Cal 1-6
deg.   180 179.5 180.5
Difference between angles 4
Cyl.1-2
deg.   240 239.5 240.5
Difference between angles 5
Cal 1-4
deg.   300 299.5 300.5
Injection quantity adjustment
Adjusting point   A
Rack position   11.3
Pump speed r/min   1300 1300 1300
Average injection quantity mm3/st.   87.2 86.2 88.2
Max. variation between cylinders %   0 -2 2
Basic   *
Fixing the lever   *
Injection quantity adjustment_02
Adjusting point   B
Rack position   7.4+-0.5
Pump speed r/min   300 300 300
Average injection quantity mm3/st.   9.8 8.6 11
Max. variation between cylinders %   0 -10 10
Fixing the rack   *
Timer adjustment
Pump speed r/min   750--
Advance angle deg.   0 0 0
Remarks
Start
 
Timer adjustment_02
Pump speed r/min   700
Advance angle deg.   0.5
Timer adjustment_03
Pump speed r/min   750
Advance angle deg.   0.8
Timer adjustment_04
Pump speed r/min   900
Advance angle deg.   1.5 1 2
Timer adjustment_05
Pump speed r/min   1250
Advance angle deg.   4 3.5 4.5
Timer adjustment_06
Pump speed r/min   -
Advance angle deg.   5 4.5 5.5
Remarks
Measure the actual speed, stop
 

Test data Ex:

Governor adjustment

Test data 101601-3160
N:Pump speed R:Rack position (mm) (1)Target notch: K (2)Set idle sub-spring (3)Main spring setting (4)The torque control spring does not operate.
----------
K=9
----------

Speed control lever angle

Test data 101601-3160
F:Full speed I:Idle (1)Stopper bolt setting
----------

----------
a=29deg+-5deg b=40deg+-5deg

Stop lever angle

Test data 101601-3160
N:Pump normal S:Stop the pump.
----------

----------
a=27deg+-5deg b=53deg+-5deg

0000001501 Q ADJUSTMENT PIPING

Test data 101601-3160
Fuel hose piping outline Tester fuel pipe A (B) branch piping Fuel hose C (D) Fuel inlet 1. Because the pump gallery is divided into two, be careful of the fuel piping at adjustment. (1)Connect the fuel inlet hose (C) to the port and connect the branch pipe. (2)Connect the tester fuel piping to the branch pipe.
----------

----------

Timing setting

Test data 101601-3160
(1)Pump vertical direction (2)Coupling's key groove position at No 1 cylinder's beginning of injection (3)- (4)-
----------

----------
a=(0deg)




Information:


Illustration 13 g02915447
Plugged DOC
The DOC utilizes a “pass-through” technology, which is different from the “wall flow” design of a DPF. When a light is shined through the DOC, a visible light should be able to pass through. Utilize a flashlight to check for a plugged DOC face. Aim the flashlight into the DOC inlet, visible light should be seen through the DOC. A plugged DOC can be caused by high oil consumption, not recommended fuel additives, or wrong engine oil types. Refer to the Operation and Maintenance Manual for recommended fluids to use. If light cannot be seen on the outlet of the DOC, then replace the DOC.CRS Bodies
Illustration 14 g06342815
Combustion Group
(1) Head Group - Combustion
(2) Gasket
(3) Tube
(4) Body Assembly - Exhaust CombustionCRS Combustion Body (4) contains the flame necessary for CRS Regeneration. There are two combustion stages that occur within the CRS Body: the primary and secondary combustion. The primary combustion of air and fuel occur within Tube (3) to create the CRS flame immediately following Head Group (1). The secondary combustion of the CRS flame and exhaust gas from the turbocharger occur within Body Assembly (4).The body assembly is the only salvageable part of the combustion group. The body assembly must be cleaned, inspected, and pressure tested prior to reuse.Cleaning
Start by isolating the CRS body from all other CRS exhaust components. Remove the head group, the mounting studs, the tube, and the two gaskets.The gasket area and the bellows joints are the two areas of the CRS body that must be cleaned thoroughly to make a proper seal.Cleaning the remainder of the CRS body is not required. If cleaning the CRS body is desired, then first perform the visual inspection, vacuum inspection, and welding procedures prior to washing the CRS body. This step is to ensure that the CRS body is salvageable, not cracked, and to keep water from getting trapped behind the heat shield.If washing is preferred, then use soap and water as a cleaning solution. Do not submerge the CRS body to prevent water from becoming trapped between the heat shield and the CRS body. A cylinder washing brush, a wire brush with handle, and a greenScotch Brite pads are all acceptable cleaning equipment. Removal of all diesel particulates is not required for inspection.
Do not use any combustible solvents to clean the CRS body.
Visual Inspection
A visual inspection of the CRS body must be completed, special equipment or crack detecting solution is not required. Visually inspect the exterior of the CRS body. Small cracks and/or punctures found on the stainless steel heat shield is normal and should be expected. Inspect the bellows sealing joints and the CRS head mating surface for visual damage.Light surface rust is typically not a problem unless rust is found on a bellows joint or the CRS gasket mating surface. Light rust in these two areas must be removed using a Scotch Brite pad.Serviceability
All bolts, studs, and clamps are not reusable and must be replaced with new components.Any thread damage in the mounting

Have questions with 101601-3160?





Group cross 101601-3160 ZEXEL

Komatsu 

9 400 610 243 
6138721600 
INJECTION-PUMP ASSEMBLY
SA6D110
 
6138721550 
INJECTION-PUMP ASSEMBLY
SA6D110
9 400 614 579 
6138721510 
INJECTION-PUMP ASSEMBLY
SA6D110
9 400 610 563 
6138721950 
INJECTION-PUMP ASSEMBLY
SA6D110
 
6138721690 
INJECTION-PUMP ASSEMBLY
SA6D110
 
 
INJECTION-PUMP ASSEMBLY
S6D110
9 400 610 305 
6138721150 
INJECTION-PUMP ASSEMBLY
S6D110
101601-3160  
 
6138711280 
INJECTION-PUMP ASSEMBLY
SA6D110
9 400 610 197 
6138721110 
INJECTION-PUMP ASSEMBLY
SA6D110
 
6138721520 
INJECTION-PUMP ASSEMBLY
SSA6D110
 
6138721560 
INJECTION-PUMP ASSEMBLY
S6D110
Back to top