Information hydraulic governor
BOSCH
F 019 Z2E 472
f019z2e472
ZEXEL
105866-5011
1058665011

Rating:
Components :
0. | INJECTION-PUMP ASSEMBLY | 105866-5011 |
1. | _ | |
2. | FUEL INJECTION PUMP | |
3. | NUMBER PLATE | |
4. | _ | |
5. | CAPSULE | |
6. | ADJUSTING DEVICE | |
7. | NOZZLE AND HOLDER ASSY | |
8. | Nozzle and Holder | |
9. | Open Pre:MPa(Kqf/cm2) | |
10. | NOZZLE-HOLDER | |
11. | NOZZLE |
Scheme ###:
1. | [1] | 158502-0420 | BASE |
2. | [1] | 029811-8000 | BEARING PLATE |
3. | [1] | 158528-0900 | PACKING RING |
7. | [1] | 158131-0100 | GEAR SHAFT |
10. | [1] | 158028-0000 | O-RING |
11. | [1] | 158507-1920 | DIAPHRAGM HOUSING |
13. | [1] | 158621-0500 | SLEEVE |
18. | [1] | 158699-0621 | COMPENSATOR ASSY |
18/1. | [1] | 158610-1101 | POWER PISTON |
18/3. | [1] | 158654-0800 | COILED SPRING |
18/4. | [1] | 158614-0700 | STOP PIN |
18/5. | [1] | 158612-0500 | PLAIN WASHER |
18/6. | [1] | 158654-0900 | COILED SPRING |
18/7. | [1] | 016110-1220 | LOCKING WASHER |
18/8. | [1] | 158612-0401 | BUSHING |
18/9. | [2] | 016550-2310 | O-RING |
18/10. | [1] | 158615-0500 | PUMP PLUNGER |
18/11. | [1] | 025620-1410 | SPRING PIN |
35. | [3] | 029330-6070 | GASKET |
36. | [3] | 010206-2520 | HEX-SOCKET-HEAD CAP SCREW |
50. | [1] | 158600-0720 | FLYWEIGHT ASSEMBLY |
51. | [1] | 158106-0100 | PLAIN WASHER |
52. | [1] | 029811-0000 | BEARING PLATE |
53. | [1] | 158620-1120 | PILOT VALVE |
60. | [2] | 158220-0000 | GUIDE LEVER |
61. | [2] | 158736-0200 | BEARING PIN |
62. | [4] | 025520-1510 | SPLIT PIN |
70. | [1] | 158730-0220 | TERMINAL ARM |
70/1. | [1] | 158230-0020 | TERMINAL ARM |
70/2. | [1] | 158315-0200 | TERMINAL SHAFT |
70/3. | [1] | 158315-0200 | TERMINAL SHAFT |
70/4. | [2] | 158736-0100 | TAPER PIN |
70/5. | [2] | 011006-0620 | SET OF NUTS |
70/6. | [1] | 158214-0020 | SPEED DROOP ADJUSTER |
70/7. | [1] | 014020-5120 | PLAIN WASHER |
70/8. | [1] | 029320-5030 | TAB WASHER |
70/9. | [1] | 010535-1220 | FLAT-HEAD SCREW |
85. | [1] | 158814-0900 | SPEED CONTROL SHAFT |
86. | [2] | 158823-0300 | BUSHING |
86. | [2] | 158823-0300 | BUSHING |
87. | [1] | 158322-0200 | COILED SPRING |
88. | [1] | 158710-0400 | STRAP |
89. | [1] | 029404-5010 | BEARING PIN |
95. | [1] | 158211-0100 | STRAP |
96. | [2] | 158653-0100 | WIRE |
104. | [1] | 158017-0900 | GASKET |
105. | [1] | 158562-5621 | GOVERNOR MOTOR ASSY |
105/1. | [1] | 158962-5110 | CASE |
105/2. | [1] | 158903-1920 | SCREW |
105/5. | [1] | 158908-3800 | GEAR HEAD |
105/6. | [1] | 158901-7301 | MOTOR |
105/7. | [4] | 014020-4140 | PLAIN WASHER D8&4.5T0.5 |
105/8. | [4] | 158901-8100 | FLAT-HEAD SCREW |
105/9. | [1] | 158402-3020 | FRICTION COUPLING |
105/14. | [1] | 158404-1000 | LEVER SHAFT |
105/15. | [2] | 014020-8140 | PLAIN WASHER D16&8.5T1.2 |
105/16. | [1] | 158904-1120 | ROUND NUT |
105/17. | [1] | 158916-0000 | SET OF NUTS |
105/18. | [1] | 158404-1100 | TOOTHED GEAR |
105/19. | [2] | 011005-0820 | SET OF NUTS |
105/20. | [2] | 015320-1540 | SPLIT PIN |
105/21. | [1] | 158401-6400 | HOSE |
105/22. | [1] | 158401-5000 | WIRE |
105/23. | [2] | 158401-7300 | GASKET |
105/24. | [1] | 158401-7500 | GASKET |
105/25. | [1] | 158401-7400 | GROUND |
105/26. | [1] | 158962-6100 | COVER |
105/27. | [3] | 014110-5440 | LOCKING WASHER |
105/28. | [3] | 012155-1240 | FLAT-HEAD SCREW M5P0.8L12 |
105/29. | [1] | 158905-0000 | FILLER PIECE |
105/30. | [1] | 014110-8440 | LOCKING WASHER |
105/31. | [1] | 013020-8140 | UNION NUT M8P1.25H6.5 |
105/34. | [1] | 158906-1400 | CLAMP |
105/36. | [1] | 012154-0840 | FLAT-HEAD SCREW M4P0.7L8 |
105/37. | [1] | 014110-4440 | LOCKING WASHER |
105/40. | [1] | 013020-6040 | UNION NUT M6P1H5 |
105/41. | [1] | 158067-0100 | SET OF NUTS |
105/45. | [1] | 026512-1640 | GASKET D15.9&12.2T1 |
105/46. | [1] | 029111-2070 | CAPSULE M12P1.5L10 |
105/61. | [2] | 158950-0100 | TERMINAL |
106. | [3] | 029010-6350 | BLEEDER SCREW M6P1.0L22 |
115. | [1] | 029050-6310 | BLEEDER SCREW |
116. | [1] | 014110-6440 | LOCKING WASHER |
118. | [1] | 158527-0200 | NEEDLE VALVE |
119. | [1] | 016500-0710 | O-RING |
123. | [2] | 026512-1640 | GASKET D15.9&12.2T1 |
124. | [2] | 029111-2070 | CAPSULE M12P1.5L10 |
130. | [1] | 029331-8040 | GASKET |
131. | [1] | 158660-0320 | CONTROL VALVE |
135. | [1] | 158515-0900 | INDICATOR PLATE |
137. | [1] | 158515-1000 | INDICATOR PLATE |
140. | [1] | 158820-0620 | POINTER |
142. | [1] | 158820-0620 | POINTER |
163. | [1] | 010210-1420 | HEX-SOCKET-HEAD CAP SCREW |
164. | [1] | 026510-1340 | GASKET D13.4&10.2T1 |
190. | [1] | 158017-1000 | GASKET |
200. | [1] | 158599-7220 | SPARE PART |
Include in #2:
105866-5011
as INJECTION-PUMP ASSEMBLY
Cross reference number
Zexel num
Bosch num
Firm num
Name
105866-5011
HYDRAULIC GOVERNOR
K 35CA HYDRAULIC GOVERNOR Hydraulic RHD10 Others
K 35CA HYDRAULIC GOVERNOR Hydraulic RHD10 Others
Information:
Downhill
When cresting a hill, the decision of whether to use power or not on the downside of the hill must be made. Best fuel economy results from using minimum power to get back to speed after climbing a grade. However, care must be taken not to allow the engine to overspeed. This engine should not exceed 2300 rpm. The PEEC cruise control may use full engine power to return the truck to the cruise set speed if the engine was unable to maintain the set speed while climbing a hill. The cruise control should be turned off before cresting the top of a hill and light throttle used to regain vehicle speed on a downhill to minimize fuel consumption.If equipped with an exhaust brake, the engine should not exceed maximum braking rpm. Refer to "Auxiliary Exhaust Brakes" section of this manual.Saving Fuel On Hills
Rolling hills provide a great opportunity to reduce fuel. Avoid downshifting on small hills. If a hill can be topped without downshifting, even if the engine lugs to the peak torque rpm (1100 - 1200), the truck should not be downshifted.On long grades that require one or more downshifts, let the PEEC engine lug back to the peak torque rpm. If road speed stabilizes with the engine running at or above peak torque rpm, remain in that gear. When going down hill, use gravity instead of engine power to regain vehicle speed.Long steep down grades should be anticipated. Vehicle speed should be reduced before cresting the top of a hill and proceeding down a long steep grade. The way to achieve maximum fuel efficiency, is to minimize the amount of braking that is used to maintain a safe vehicle speed.The engine's ability to hold the truck back increases with engine speed. A gear should be selected that runs the engine near the high engine rpm limit for long steep hills when braking is required.Speed reductions and future stops should be anticipated ahead of time to save fuel. Downshifts should be avoided and the amount of braking minimized to improve fuel consumption.Cruising Speed
It's a simple fact that the faster a vehicle is driven the more fuel it will consume. A few miles per hour (km/h) can make a significant difference in fuel economy.Increasing cruising speed from 55 to 65 mph (88 to 104 km/h) will increase fuel consumption of a typical class 8 truck approximately 1.0 mpg (0.4 km/L). A practice of driving faster to increase stop time makes those stops very expensive.Cruising is the most common operating condition for most trucks and therefore, provides the greatest opportunity to benefit from operation in the most fuel efficient rpm range of the engine. A significant improvement in fuel economy can be realized by operating the truck in a gear that will keep the engine between 1400 and 1600 rpm.The PEEC can be programmed to limit vehicle speed and encourage operation in the highest gear during a cruising condition for optimum fuel economy.Cruise Control (CC)
The PEEC engine can
When cresting a hill, the decision of whether to use power or not on the downside of the hill must be made. Best fuel economy results from using minimum power to get back to speed after climbing a grade. However, care must be taken not to allow the engine to overspeed. This engine should not exceed 2300 rpm. The PEEC cruise control may use full engine power to return the truck to the cruise set speed if the engine was unable to maintain the set speed while climbing a hill. The cruise control should be turned off before cresting the top of a hill and light throttle used to regain vehicle speed on a downhill to minimize fuel consumption.If equipped with an exhaust brake, the engine should not exceed maximum braking rpm. Refer to "Auxiliary Exhaust Brakes" section of this manual.Saving Fuel On Hills
Rolling hills provide a great opportunity to reduce fuel. Avoid downshifting on small hills. If a hill can be topped without downshifting, even if the engine lugs to the peak torque rpm (1100 - 1200), the truck should not be downshifted.On long grades that require one or more downshifts, let the PEEC engine lug back to the peak torque rpm. If road speed stabilizes with the engine running at or above peak torque rpm, remain in that gear. When going down hill, use gravity instead of engine power to regain vehicle speed.Long steep down grades should be anticipated. Vehicle speed should be reduced before cresting the top of a hill and proceeding down a long steep grade. The way to achieve maximum fuel efficiency, is to minimize the amount of braking that is used to maintain a safe vehicle speed.The engine's ability to hold the truck back increases with engine speed. A gear should be selected that runs the engine near the high engine rpm limit for long steep hills when braking is required.Speed reductions and future stops should be anticipated ahead of time to save fuel. Downshifts should be avoided and the amount of braking minimized to improve fuel consumption.Cruising Speed
It's a simple fact that the faster a vehicle is driven the more fuel it will consume. A few miles per hour (km/h) can make a significant difference in fuel economy.Increasing cruising speed from 55 to 65 mph (88 to 104 km/h) will increase fuel consumption of a typical class 8 truck approximately 1.0 mpg (0.4 km/L). A practice of driving faster to increase stop time makes those stops very expensive.Cruising is the most common operating condition for most trucks and therefore, provides the greatest opportunity to benefit from operation in the most fuel efficient rpm range of the engine. A significant improvement in fuel economy can be realized by operating the truck in a gear that will keep the engine between 1400 and 1600 rpm.The PEEC can be programmed to limit vehicle speed and encourage operation in the highest gear during a cruising condition for optimum fuel economy.Cruise Control (CC)
The PEEC engine can