Information hydraulic governor
BOSCH
F 019 Z2E 441
f019z2e441
ZEXEL
105866-4210
1058664210
Rating:
Components :
0. | INJECTION-PUMP ASSEMBLY | 105866-4210 |
1. | _ | |
2. | FUEL INJECTION PUMP | |
3. | NUMBER PLATE | |
4. | _ | |
5. | CAPSULE | |
6. | ADJUSTING DEVICE | |
7. | NOZZLE AND HOLDER ASSY | |
8. | Nozzle and Holder | |
9. | Open Pre:MPa(Kqf/cm2) | |
10. | NOZZLE-HOLDER | |
11. | NOZZLE |
Scheme ###:
1. | [1] | 158502-0420 | BASE |
2. | [1] | 029811-8000 | BEARING PLATE |
3. | [1] | 158528-0900 | PACKING RING |
7. | [1] | 158131-0100 | GEAR SHAFT |
10. | [1] | 158028-0000 | O-RING |
11. | [1] | 158507-1920 | DIAPHRAGM HOUSING |
13. | [1] | 158621-0800 | SLEEVE |
18. | [1] | 158699-0621 | COMPENSATOR ASSY |
18/1. | [1] | 158610-1101 | POWER PISTON |
18/3. | [1] | 158654-0800 | COILED SPRING |
18/4. | [1] | 158614-0700 | STOP PIN |
18/5. | [1] | 158612-0500 | PLAIN WASHER |
18/6. | [1] | 158654-0900 | COILED SPRING |
18/7. | [1] | 016110-1220 | LOCKING WASHER |
18/8. | [1] | 158612-0401 | BUSHING |
18/9. | [2] | 016550-2310 | O-RING |
18/10. | [1] | 158615-0500 | PUMP PLUNGER |
18/11. | [1] | 025620-1410 | SPRING PIN |
35. | [3] | 029330-6070 | GASKET |
36. | [3] | 010206-2520 | HEX-SOCKET-HEAD CAP SCREW |
50. | [1] | 158600-1020 | FLYWEIGHT ASSEMBLY |
51. | [1] | 158106-0100 | PLAIN WASHER |
52. | [1] | 029811-0000 | BEARING PLATE |
53. | [1] | 158620-1220 | PILOT VALVE |
60. | [2] | 158220-0000 | GUIDE LEVER |
61. | [2] | 158736-0200 | BEARING PIN |
62. | [4] | 025520-1510 | SPLIT PIN |
70. | [1] | 158730-0220 | TERMINAL ARM |
70/1. | [1] | 158230-0020 | TERMINAL ARM |
70/2. | [1] | 158315-0200 | TERMINAL SHAFT |
70/3. | [1] | 158315-0200 | TERMINAL SHAFT |
70/4. | [2] | 158736-0100 | TAPER PIN |
70/5. | [2] | 011006-0620 | SET OF NUTS |
70/6. | [1] | 158214-0020 | SPEED DROOP ADJUSTER |
70/7. | [1] | 014020-5120 | PLAIN WASHER |
70/8. | [1] | 029320-5030 | TAB WASHER |
70/9. | [1] | 010535-1220 | FLAT-HEAD SCREW |
85. | [1] | 158814-0900 | SPEED CONTROL SHAFT |
86. | [2] | 158823-0300 | BUSHING |
86. | [2] | 158823-0300 | BUSHING |
87. | [1] | 158322-0200 | COILED SPRING |
88. | [1] | 158710-0400 | STRAP |
89. | [1] | 029404-5010 | BEARING PIN |
95. | [1] | 158211-0100 | STRAP |
96. | [2] | 158653-0100 | WIRE |
104. | [1] | 158017-0900 | GASKET |
105. | [1] | 158963-0020 | PNEUMATIC CONTROLLER |
105/1. | [1] | 158562-4600 | COVER |
105/2. | [1] | 158910-0200 | CYLINDER |
105/3. | [3] | 029050-6090 | FLAT-HEAD SCREW |
105/4. | [1] | 014110-6440 | LOCKING WASHER |
105/5. | [1] | 158416-0000 | FLAT-HEAD SCREW |
105/6. | [1] | 158915-0700 | UNION NUT |
105/7. | [1] | 158918-0000 | PLAIN WASHER D30&10.8T1.00 |
105/8. | [1] | 158412-0400 | COILED SPRING K4.0 |
105/9. | [1] | 158912-0600 | COILED SPRING K5.1 |
105/9B. | [1] | 158912-0500 | COILED SPRING K4.9 |
105/9C. | [1] | 158912-0700 | COILED SPRING K5.2 |
105/9D. | [1] | 158912-1100 | COILED SPRING K4.8 |
105/9E. | [1] | 158912-1200 | COILED SPRING K5.4 |
105/10. | [1] | 158918-0000 | PLAIN WASHER D30&10.8T1.00 |
105/11. | [1] | 158413-0001 | STOP PIN |
105/12. | [1] | 158414-0000 | PUMP PLUNGER |
105/13. | [1] | 158414-0100 | DIAPHRAGM |
105/14. | [1] | 158414-0200 | PLATE |
105/15. | [1] | 013020-6040 | UNION NUT M6P1H5 |
105/16. | [1] | 158910-0300 | CAP |
105/17. | [1] | 158915-1000 | FLAT-HEAD SCREW |
105/18. | [1] | 029630-9050 | O-RING |
105/19. | [1] | 158567-1500 | WING NUT |
105/21. | [1] | 158904-2020 | ROUND NUT |
105/22. | [1] | 158916-0000 | SET OF NUTS |
105/23. | [2] | 029050-6220 | FLAT-HEAD SCREW |
105/24. | [2] | 029320-6010 | LOCKING WASHER |
105/25. | [2] | 158909-0200 | BLEEDER SCREW |
105/26. | [1] | 027114-1040 | INLET UNION |
105/27. | [2] | 029331-4120 | GASKET D18&14.2T1.5 |
105/28. | [1] | 027414-2640 | EYE BOLT |
105/30. | [1] | 013020-6040 | UNION NUT M6P1H5 |
105/31. | [1] | 158567-1200 | SET OF NUTS |
105/35. | [1] | 026512-1640 | GASKET D15.9&12.2T1 |
105/36. | [1] | 158066-0000 | BLEEDER SCREW |
106. | [4] | 029010-6350 | BLEEDER SCREW M6P1.0L22 |
118. | [1] | 158527-0200 | NEEDLE VALVE |
119. | [1] | 016500-0710 | O-RING |
123. | [2] | 026512-1640 | GASKET D15.9&12.2T1 |
124. | [2] | 029111-2070 | CAPSULE M12P1.5L10 |
130. | [1] | 029331-8040 | GASKET |
131. | [1] | 158660-0320 | CONTROL VALVE |
135. | [1] | 158515-0900 | INDICATOR PLATE |
137. | [1] | 158515-1000 | INDICATOR PLATE |
140. | [1] | 158820-0620 | POINTER |
142. | [1] | 158820-0620 | POINTER |
158. | [1] | 015040-0880 | BEARING PIN |
163. | [1] | 010210-1420 | HEX-SOCKET-HEAD CAP SCREW |
164. | [1] | 026510-1340 | GASKET D13.4&10.2T1 |
190. | [1] | 158017-1000 | GASKET |
200. | [1] | 158599-7320 | SPARE PART |
Include in #2:
105866-4210
as INJECTION-PUMP ASSEMBLY
Cross reference number
Zexel num
Bosch num
Firm num
Name
Information:
Commercial Oils
If oils other than Caterpillar oils are used, the following oil specifications provide guidelines for the selection of commercial products.* API specifications CF-4, CF-4/SF, or CF-4/SG
Failure to follow the commercial oil recommendation for API CF-4 performance oils can cause shortened engine life due to piston carbon deposits, liner bore polish and/or abnormally higher increasing oil consumption.API CC and CD oils are unacceptable in this Caterpillar diesel engine.
Lubricant Viscosity Recommendations
The proper SAE grade of oil to select is determined by the minimum outside temperature at which the engine will be started and the maximum outside temperature in which the engine will be operating. This recommendation is to ensure the correct viscosity is used until the next oil change.The recommendation would be to use the highest viscosity oil possible. Even though the ambient temperature may be low, operating engines can still be subjected to normal oil temperatures because of regulated temperature components. The higher viscosity oils will provide better protection to all components which it contacts during the full operating cycle.The use of API CF-4 multi-viscosity oils is recommended because of full protection through a wider temperature range. See chart for recommended viscosity and temperature range.To determine if the oil in the crankcase will flow in cold weather, remove the oil dipstick before starting. If the oil will flow off, the oil is fluid enough to circulate properly. Air Starting Motor Oiler
A lubricator should be used with the starting system.* Use 10 weight non-detergent engine oil above 0°C (32°F) or* diesel fuel or kerosene at temperatures below 0°C (32°F).Lubricant Total Base Number (TBN)
New engine oil must have a TBN of 10 times (for direct injection engines) the percent fuel sulfur as measured by ASTM (American Society of Testing Materials) D2896 method. Refer to the Fuel Specifications in this manual for additional information. Additional Notes
The percentage of sulfur in the fuel will affect the engine oil recommendations. For fuel sulfur effects, the Infrared Analysis or the ASTM D2896 procedure can be used to evaluate the residual neutralization properties of an engine oil. The sulfur products formation depends on the fuel sulfur content, oil formulation, crankcase blowby, engine operating conditions and ambient temperature.The fuel sulfur neutralization of today's new oil formulations along with direct injection (DI) system engines are more effective. Field results indicate that direct injection combustion (DI) systems and the oils now recommended for these engines will operate at an oil TBN equal to 10 times the fuel sulfur. Therefore, the Caterpillar requirements reflect this value of 10 times instead of the previous 20 times for oil TBN when related to fuel sulfur for Cat DI engines and API CF-4 oils. Used oil analysis should be a part of the overall program to provide the assurance that a particular engine installation with all its parameters (engine, oil, operation, maintenance and fuel) are under control. Consult with your Caterpillar dealer for the latest lubrication recommendations.Synthetic Base Stock Oils (SPC)
The performance characteristics of the oil depends on the base oil and
If oils other than Caterpillar oils are used, the following oil specifications provide guidelines for the selection of commercial products.* API specifications CF-4, CF-4/SF, or CF-4/SG
Failure to follow the commercial oil recommendation for API CF-4 performance oils can cause shortened engine life due to piston carbon deposits, liner bore polish and/or abnormally higher increasing oil consumption.API CC and CD oils are unacceptable in this Caterpillar diesel engine.
Lubricant Viscosity Recommendations
The proper SAE grade of oil to select is determined by the minimum outside temperature at which the engine will be started and the maximum outside temperature in which the engine will be operating. This recommendation is to ensure the correct viscosity is used until the next oil change.The recommendation would be to use the highest viscosity oil possible. Even though the ambient temperature may be low, operating engines can still be subjected to normal oil temperatures because of regulated temperature components. The higher viscosity oils will provide better protection to all components which it contacts during the full operating cycle.The use of API CF-4 multi-viscosity oils is recommended because of full protection through a wider temperature range. See chart for recommended viscosity and temperature range.To determine if the oil in the crankcase will flow in cold weather, remove the oil dipstick before starting. If the oil will flow off, the oil is fluid enough to circulate properly. Air Starting Motor Oiler
A lubricator should be used with the starting system.* Use 10 weight non-detergent engine oil above 0°C (32°F) or* diesel fuel or kerosene at temperatures below 0°C (32°F).Lubricant Total Base Number (TBN)
New engine oil must have a TBN of 10 times (for direct injection engines) the percent fuel sulfur as measured by ASTM (American Society of Testing Materials) D2896 method. Refer to the Fuel Specifications in this manual for additional information. Additional Notes
The percentage of sulfur in the fuel will affect the engine oil recommendations. For fuel sulfur effects, the Infrared Analysis or the ASTM D2896 procedure can be used to evaluate the residual neutralization properties of an engine oil. The sulfur products formation depends on the fuel sulfur content, oil formulation, crankcase blowby, engine operating conditions and ambient temperature.The fuel sulfur neutralization of today's new oil formulations along with direct injection (DI) system engines are more effective. Field results indicate that direct injection combustion (DI) systems and the oils now recommended for these engines will operate at an oil TBN equal to 10 times the fuel sulfur. Therefore, the Caterpillar requirements reflect this value of 10 times instead of the previous 20 times for oil TBN when related to fuel sulfur for Cat DI engines and API CF-4 oils. Used oil analysis should be a part of the overall program to provide the assurance that a particular engine installation with all its parameters (engine, oil, operation, maintenance and fuel) are under control. Consult with your Caterpillar dealer for the latest lubrication recommendations.Synthetic Base Stock Oils (SPC)
The performance characteristics of the oil depends on the base oil and